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EXTENDED   ABSTRACT 

Summary 

In brief, this paper addresses the problem of obtaining for any given probability space 
(Q,5 ,P) an extension to a probability space (Q0, B0F0) such that for any given function 
f:[0,ip _> [0,1], suitably analytic, and any given finite collection of ordinary events 
a,b,c,...,m in sample space B, with possible relations among them, there is an event ocf = 
ocf(a,b,c,...,m) in B0 (not dependent upon P) such that for all possible choices of P and 
a,b,c,...,m, 

Po(af) = f(P(a),P(b),P(c),...,P(m)), (D 

provided the right-hand side is well-defined relative to f. It is seen that the above procedure 
generalizes that of the problem of constructing "conditional event algebras" relative to all 
conditional probabilities. Applications to problems of data fusion and combination of evidence 
are also provided. 

Motivations and More Details 

Numerical modifications of individual probability expressions arise quite often based solely 
on probability evaluations themselves, as. e.g., (1), in the expansion f(P(a»b),P(b)) = P(a v 
b') = l-P(b) + P(a«b) or, (2), when a and b are P-independent, f(P(a),P(b))= P(a»b) = 
P(a>P(b), where we note the first expression is an affine combination of P(b) and P(a»b), 
while the second expression is a an arithmetic product of P(a) and P(b). They can also arise 
when: (3), we wish to obtain weighted averages of calculated probabilities as in , 
f(P(a),P(b))= w-P(a) + (l-w)-P(b), or perhaps (4), as an arithmetic division of P(a«b) by 
P(b), as in   f(P(a»b),P(b))= P(a»b)/P(b), which of course we recognize as P(alb), the 



conditional probability of a given b. Further modifications to previously calculated 
probabilities can occur when: (5), linguistic changes are imposed as in the modeling of (meta) 
statements such as s = P(b), where b = "It is very probable that a" , where a = John will 
arrive tomorrow" and where by prior knowledge we can estimate P(a). Also, by prior 
knowledge, we conclude that the hedge "very probable" typically produces an exponentiation, 
of say 1.5, so that we obtain the estimate f(P(a)) = P(a)1-5 , quite reminiscent of the well- 
known use of exponential or other hedges in fuzzy set modeling. Similarly, (6), we may 
wish to obtain more complicated compounds of known probabilities in modeling empirically 
outputs of physical systems as, e.g., in the relation f(P(a),P(a«b),P(b)) = P(a) • + 
((3.2)-P(b)-P(a.b)/(4-P(b) + P(a))). 

Except for the first two examples, in general for each of the remaining examples 3-6, 
there is no corresponding event af, some function (boolean or otherwise) of a,b,c,.. in the 
original sample space B of the basic events a,b,c,... such that equation (1) is satisfied. 

Thus, in general we cannot obtain probability evaluations of further logical combinations of 
expressions whose modified probability evaluations are known as in (1), such as in the 
obtaining of 

P(a v ß) = P(a) + P(ß) - P(a*ß) = s +1 - P(a«ß), (2) 

where analogous to (1) 
P(cc) = s  ,  P(ß) = t  , (3) 

s,t known functions of P(a),P(b),P(a«b),P(c), etc. 

On the other hand, a remedy has been developed for the type of problem arising in the 
fourth example: arithmetic division of probabilities resulting in conditional probabilities can 
now be treated via some choice of a conditional event algebra (out of many possible 
candidates).Even though in this case a and ß in eq.(3) ( where here s and t are arithmetic 
divisions representing conditional probabilities) do not lie in B, they do lie in a space 
naturally extending B - the conditional event algebra of choice. (See [1] for background and 
more details.) 

In fact, a recent result [2] has indicated that the only mathematically desirable choice for a 
conditional event algebra is the one arising uniquely from the construction of the product 
space that has a countable infinity of independent marginal probability spaces, each identical 
to the one representing the original sample space of ordinary unconditional events [3]. In that 
space, typically, conditional events as af satisfying eq.(l) for Example 4, where 

f(P(a«b),P(b)) = P(a«b)/P(b) = P(alb), (4) 

l take the form of the natural disjoint cartesian product counterpart to the expansion of 
arithmetic division in terms of an infinite power series: 

ocf=(alb)=      v     (b'x...xb')x(a»b)xQxQx..., (5) 
j=0   (j factors) 

where Q. is the universal event in sample space (sigma-algebra) B. Thus, for any given 
probability measure P over B, letting P0 denote the corresponding product space probability 



measure extending P, it follows that P0 applied to a in (5) produces  eq.(4), where P is 
identified with P0. 

It is the contention of this paper that a similar product space construction can be used to 
develop an algebra of numerical and linguistic modifications of probability statements. This is 
accomplished by generalizing the forms of ocf in eq.(5), relative to variability of coefficient 
factors and number of arguments. For example, utilize first the formal relation 

al/2 = a.(l-a')-1/2 (6) 

and the power series expansion of the second factor, producing the formal power series 
expansion 

+°° /2H\ 
al/2=  I (a^-a-cj • ■ ci =(def) • 2"(2j-l) ,j=0,l,2,..       (7) 

j=o        J V  J   / 

In turn, this yields the corresponding product space form 

+00 

a1/2 =   v    a'x... x a' x a x 7(cp   > (8) 
j=0  (j factors) 

where -y(cj) is a conditional event such that for all probability measures P over B, 

Po(T(cj)) = cj. (9) 

As an example of such nontrivial constant-valued events, consider 7(1/3), representing 1/3 in 

probability for all P as 

y(l/3) =(def) ( bxbxb' I bxbxb' v bxb'xb v b'xbxb ), (10) 

/ where b * 0 , Q. is any event in B - to standardize, preferably in limiting form approaching 
Q., whence 

Po( 7(1/3)) = P(b)P(b)P(b') /(P(b)P(b)P(b') + P(b)P(b')P(b) + P(b')P(b)P(b)) 

= P(b)2P(b') / 3P(b)2P(b') 

=1/3. (ID 



Finally, note that that a1/2 is the appropriate appellation for the right-hand side of (8), since 
P0 as a product probability measure yields in combination with the disjointness of the terms in 
eq.(8): 

Po(a1/2) = !P(a,)i-P(a)-P(Y(cj)) = P(a)-EP(a')J-cj   = P(a)-(1-P(a'))-1/2 = P(a)1/2.   (12) 
j=0 i=o 
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